1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
/*!
Provides direct access to a DFA implementation of Aho-Corasick.

This is a low-level API that generally only needs to be used in niche
circumstances. When possible, prefer using [`AhoCorasick`](crate::AhoCorasick)
instead of a DFA directly. Using an `DFA` directly is typically only necessary
when one needs access to the [`Automaton`] trait implementation.
*/

use alloc::{vec, vec::Vec};

use crate::{
    automaton::Automaton,
    nfa::noncontiguous,
    util::{
        alphabet::ByteClasses,
        error::{BuildError, MatchError},
        int::{Usize, U32},
        prefilter::Prefilter,
        primitives::{IteratorIndexExt, PatternID, SmallIndex, StateID},
        search::{Anchored, MatchKind, StartKind},
        special::Special,
    },
};

/// A DFA implementation of Aho-Corasick.
///
/// When possible, prefer using [`AhoCorasick`](crate::AhoCorasick) instead of
/// this type directly. Using a `DFA` directly is typically only necessary when
/// one needs access to the [`Automaton`] trait implementation.
///
/// This DFA can only be built by first constructing a [`noncontiguous::NFA`].
/// Both [`DFA::new`] and [`Builder::build`] do this for you automatically, but
/// [`Builder::build_from_noncontiguous`] permits doing it explicitly.
///
/// A DFA provides the best possible search performance (in this crate) via two
/// mechanisms:
///
/// * All states use a dense representation for their transitions.
/// * All failure transitions are pre-computed such that they are never
/// explicitly handled at search time.
///
/// These two facts combined mean that every state transition is performed
/// using a constant number of instructions. However, this comes at
/// great cost. The memory usage of a DFA can be quite exorbitant.
/// It is potentially multiple orders of magnitude greater than a
/// [`contiguous::NFA`](crate::nfa::contiguous::NFA) for example. In exchange,
/// a DFA will typically have better search speed than a `contiguous::NFA`, but
/// not by orders of magnitude.
///
/// Unless you have a small number of patterns or memory usage is not a concern
/// and search performance is critical, a DFA is usually not the best choice.
///
/// Moreover, unlike the NFAs in this crate, it is costly for a DFA to
/// support for anchored and unanchored search configurations. Namely,
/// since failure transitions are pre-computed, supporting both anchored
/// and unanchored searches requires a duplication of the transition table,
/// making the memory usage of such a DFA ever bigger. (The NFAs in this crate
/// unconditionally support both anchored and unanchored searches because there
/// is essentially no added cost for doing so.) It is for this reason that
/// a DFA's support for anchored and unanchored searches can be configured
/// via [`Builder::start_kind`]. By default, a DFA only supports unanchored
/// searches.
///
/// # Example
///
/// This example shows how to build an `DFA` directly and use it to execute
/// [`Automaton::try_find`]:
///
/// ```
/// use aho_corasick::{
///     automaton::Automaton,
///     dfa::DFA,
///     Input, Match,
/// };
///
/// let patterns = &["b", "abc", "abcd"];
/// let haystack = "abcd";
///
/// let nfa = DFA::new(patterns).unwrap();
/// assert_eq!(
///     Some(Match::must(0, 1..2)),
///     nfa.try_find(&Input::new(haystack))?,
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// It is also possible to implement your own version of `try_find`. See the
/// [`Automaton`] documentation for an example.
#[derive(Clone)]
pub struct DFA {
    /// The DFA transition table. IDs in this table are pre-multiplied. So
    /// instead of the IDs being 0, 1, 2, 3, ..., they are 0*stride, 1*stride,
    /// 2*stride, 3*stride, ...
    trans: Vec<StateID>,
    /// The matches for every match state in this DFA. This is indexed by order
    /// of match states in the DFA. Namely, as constructed, match states are
    /// always laid out sequentially and contiguously in memory. Thus, after
    /// converting a match state ID to a match state index, the indices are
    /// all adjacent.
    ///
    /// More concretely, when a search enters a match state with id 'sid', then
    /// the matching patterns are at 'matches[(sid >> stride2) - 2]'. The '- 2'
    /// is to offset the first two states of a DFA: the dead and fail states.
    matches: Vec<Vec<PatternID>>,
    /// The amount of heap memory used, in bytes, by the inner Vecs of
    /// 'matches'.
    matches_memory_usage: usize,
    /// The length of each pattern. This is used to compute the start offset
    /// of a match.
    pattern_lens: Vec<SmallIndex>,
    /// A prefilter for accelerating searches, if one exists.
    prefilter: Option<Prefilter>,
    /// The match semantics built into this DFA.
    match_kind: MatchKind,
    /// The total number of states in this DFA.
    state_len: usize,
    /// The alphabet size, or total number of equivalence classes, for this
    /// DFA. Note that the actual number of transitions in each state is
    /// stride=2^stride2, where stride is the smallest power of 2 greater than
    /// or equal to alphabet_len. We do things this way so that we can use
    /// bitshifting to go from a state ID to an index into 'matches'.
    alphabet_len: usize,
    /// The exponent with a base 2, such that stride=2^stride2. Given a state
    /// index 'i', its state identifier is 'i << stride2'. Given a state
    /// identifier 'sid', its state index is 'sid >> stride2'.
    stride2: usize,
    /// The equivalence classes for this DFA. All transitions are defined on
    /// equivalence classes and not on the 256 distinct byte values.
    byte_classes: ByteClasses,
    /// The length of the shortest pattern in this automaton.
    min_pattern_len: usize,
    /// The length of the longest pattern in this automaton.
    max_pattern_len: usize,
    /// The information required to deduce which states are "special" in this
    /// DFA.
    special: Special,
}

impl DFA {
    /// Create a new Aho-Corasick DFA using the default configuration.
    ///
    /// Use a [`Builder`] if you want to change the configuration.
    pub fn new<I, P>(patterns: I) -> Result<DFA, BuildError>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        DFA::builder().build(patterns)
    }

    /// A convenience method for returning a new Aho-Corasick DFA builder.
    ///
    /// This usually permits one to just import the `DFA` type.
    pub fn builder() -> Builder {
        Builder::new()
    }
}

impl DFA {
    /// A sentinel state ID indicating that a search should stop once it has
    /// entered this state. When a search stops, it returns a match if one has
    /// been found, otherwise no match. A DFA always has an actual dead state
    /// at this ID.
    ///
    /// N.B. DFAs, unlike NFAs, do not have any notion of a FAIL state.
    /// Namely, the whole point of a DFA is that the FAIL state is completely
    /// compiled away. That is, DFA construction involves pre-computing the
    /// failure transitions everywhere, such that failure transitions are no
    /// longer used at search time. This, combined with its uniformly dense
    /// representation, are the two most important factors in why it's faster
    /// than the NFAs in this crate.
    const DEAD: StateID = StateID::new_unchecked(0);

    /// Adds the given pattern IDs as matches to the given state and also
    /// records the added memory usage.
    fn set_matches(&mut self, sid: StateID, pids: &[PatternID]) {
        use core::mem::size_of;

        assert!(!pids.is_empty(), "match state must have non-empty pids");
        let index = (sid.as_usize() >> self.stride2).checked_sub(2).unwrap();
        self.matches[index].extend_from_slice(pids);
        self.matches_memory_usage += size_of::<PatternID>() * pids.len();
    }
}

// SAFETY: 'start_state' always returns a valid state ID, 'next_state' always
// returns a valid state ID given a valid state ID. We otherwise claim that
// all other methods are correct as well.
unsafe impl Automaton for DFA {
    #[inline(always)]
    fn start_state(&self, anchored: Anchored) -> Result<StateID, MatchError> {
        // Either of the start state IDs can be DEAD, in which case, support
        // for that type of search is not provided by this DFA. Which start
        // state IDs are inactive depends on the 'StartKind' configuration at
        // DFA construction time.
        match anchored {
            Anchored::No => {
                let start = self.special.start_unanchored_id;
                if start == DFA::DEAD {
                    Err(MatchError::invalid_input_unanchored())
                } else {
                    Ok(start)
                }
            }
            Anchored::Yes => {
                let start = self.special.start_anchored_id;
                if start == DFA::DEAD {
                    Err(MatchError::invalid_input_anchored())
                } else {
                    Ok(start)
                }
            }
        }
    }

    #[inline(always)]
    fn next_state(
        &self,
        _anchored: Anchored,
        sid: StateID,
        byte: u8,
    ) -> StateID {
        let class = self.byte_classes.get(byte);
        self.trans[(sid.as_u32() + u32::from(class)).as_usize()]
    }

    #[inline(always)]
    fn is_special(&self, sid: StateID) -> bool {
        sid <= self.special.max_special_id
    }

    #[inline(always)]
    fn is_dead(&self, sid: StateID) -> bool {
        sid == DFA::DEAD
    }

    #[inline(always)]
    fn is_match(&self, sid: StateID) -> bool {
        !self.is_dead(sid) && sid <= self.special.max_match_id
    }

    #[inline(always)]
    fn is_start(&self, sid: StateID) -> bool {
        sid == self.special.start_unanchored_id
            || sid == self.special.start_anchored_id
    }

    #[inline(always)]
    fn match_kind(&self) -> MatchKind {
        self.match_kind
    }

    #[inline(always)]
    fn patterns_len(&self) -> usize {
        self.pattern_lens.len()
    }

    #[inline(always)]
    fn pattern_len(&self, pid: PatternID) -> usize {
        self.pattern_lens[pid].as_usize()
    }

    #[inline(always)]
    fn min_pattern_len(&self) -> usize {
        self.min_pattern_len
    }

    #[inline(always)]
    fn max_pattern_len(&self) -> usize {
        self.max_pattern_len
    }

    #[inline(always)]
    fn match_len(&self, sid: StateID) -> usize {
        debug_assert!(self.is_match(sid));
        let offset = (sid.as_usize() >> self.stride2) - 2;
        self.matches[offset].len()
    }

    #[inline(always)]
    fn match_pattern(&self, sid: StateID, index: usize) -> PatternID {
        debug_assert!(self.is_match(sid));
        let offset = (sid.as_usize() >> self.stride2) - 2;
        self.matches[offset][index]
    }

    #[inline(always)]
    fn memory_usage(&self) -> usize {
        use core::mem::size_of;

        (self.trans.len() * size_of::<u32>())
            + (self.matches.len() * size_of::<Vec<PatternID>>())
            + self.matches_memory_usage
            + (self.pattern_lens.len() * size_of::<SmallIndex>())
            + self.prefilter.as_ref().map_or(0, |p| p.memory_usage())
    }

    #[inline(always)]
    fn prefilter(&self) -> Option<&Prefilter> {
        self.prefilter.as_ref()
    }
}

impl core::fmt::Debug for DFA {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        use crate::{
            automaton::{fmt_state_indicator, sparse_transitions},
            util::debug::DebugByte,
        };

        writeln!(f, "dfa::DFA(")?;
        for index in 0..self.state_len {
            let sid = StateID::new_unchecked(index << self.stride2);
            // While we do currently include the FAIL state in the transition
            // table (to simplify construction), it is never actually used. It
            // poses problems with the code below because it gets treated as
            // a match state incidentally when it is, of course, not. So we
            // special case it. The fail state is always the first state after
            // the dead state.
            //
            // If the construction is changed to remove the fail state (it
            // probably should be), then this special case should be updated.
            if index == 1 {
                writeln!(f, "F {:06}:", sid.as_usize())?;
                continue;
            }
            fmt_state_indicator(f, self, sid)?;
            write!(f, "{:06}: ", sid.as_usize())?;

            let it = (0..self.byte_classes.alphabet_len()).map(|class| {
                (class.as_u8(), self.trans[sid.as_usize() + class])
            });
            for (i, (start, end, next)) in sparse_transitions(it).enumerate() {
                if i > 0 {
                    write!(f, ", ")?;
                }
                if start == end {
                    write!(
                        f,
                        "{:?} => {:?}",
                        DebugByte(start),
                        next.as_usize()
                    )?;
                } else {
                    write!(
                        f,
                        "{:?}-{:?} => {:?}",
                        DebugByte(start),
                        DebugByte(end),
                        next.as_usize()
                    )?;
                }
            }
            write!(f, "\n")?;
            if self.is_match(sid) {
                write!(f, " matches: ")?;
                for i in 0..self.match_len(sid) {
                    if i > 0 {
                        write!(f, ", ")?;
                    }
                    let pid = self.match_pattern(sid, i);
                    write!(f, "{}", pid.as_usize())?;
                }
                write!(f, "\n")?;
            }
        }
        writeln!(f, "match kind: {:?}", self.match_kind)?;
        writeln!(f, "prefilter: {:?}", self.prefilter.is_some())?;
        writeln!(f, "state length: {:?}", self.state_len)?;
        writeln!(f, "pattern length: {:?}", self.patterns_len())?;
        writeln!(f, "shortest pattern length: {:?}", self.min_pattern_len)?;
        writeln!(f, "longest pattern length: {:?}", self.max_pattern_len)?;
        writeln!(f, "alphabet length: {:?}", self.alphabet_len)?;
        writeln!(f, "stride: {:?}", 1 << self.stride2)?;
        writeln!(f, "byte classes: {:?}", self.byte_classes)?;
        writeln!(f, "memory usage: {:?}", self.memory_usage())?;
        writeln!(f, ")")?;
        Ok(())
    }
}

/// A builder for configuring an Aho-Corasick DFA.
///
/// This builder has a subset of the options available to a
/// [`AhoCorasickBuilder`](crate::AhoCorasickBuilder). Of the shared options,
/// their behavior is identical.
#[derive(Clone, Debug)]
pub struct Builder {
    noncontiguous: noncontiguous::Builder,
    start_kind: StartKind,
    byte_classes: bool,
}

impl Default for Builder {
    fn default() -> Builder {
        Builder {
            noncontiguous: noncontiguous::Builder::new(),
            start_kind: StartKind::Unanchored,
            byte_classes: true,
        }
    }
}

impl Builder {
    /// Create a new builder for configuring an Aho-Corasick DFA.
    pub fn new() -> Builder {
        Builder::default()
    }

    /// Build an Aho-Corasick DFA from the given iterator of patterns.
    ///
    /// A builder may be reused to create more DFAs.
    pub fn build<I, P>(&self, patterns: I) -> Result<DFA, BuildError>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        let nnfa = self.noncontiguous.build(patterns)?;
        self.build_from_noncontiguous(&nnfa)
    }

    /// Build an Aho-Corasick DFA from the given noncontiguous NFA.
    ///
    /// Note that when this method is used, only the `start_kind` and
    /// `byte_classes` settings on this builder are respected. The other
    /// settings only apply to the initial construction of the Aho-Corasick
    /// automaton. Since using this method requires that initial construction
    /// has already completed, all settings impacting only initial construction
    /// are no longer relevant.
    pub fn build_from_noncontiguous(
        &self,
        nnfa: &noncontiguous::NFA,
    ) -> Result<DFA, BuildError> {
        debug!("building DFA");
        let byte_classes = if self.byte_classes {
            nnfa.byte_classes().clone()
        } else {
            ByteClasses::singletons()
        };
        let state_len = match self.start_kind {
            StartKind::Unanchored | StartKind::Anchored => nnfa.states().len(),
            StartKind::Both => {
                // These unwraps are OK because we know that the number of
                // NFA states is < StateID::LIMIT which is in turn less than
                // i32::MAX. Thus, there is always room to multiply by 2.
                // Finally, the number of states is always at least 4 in the
                // NFA (DEAD, FAIL, START-UNANCHORED, START-ANCHORED), so the
                // subtraction of 4 is okay.
                //
                // Note that we subtract 4 because the "anchored" part of
                // the DFA duplicates the unanchored part (without failure
                // transitions), but reuses the DEAD, FAIL and START states.
                nnfa.states()
                    .len()
                    .checked_mul(2)
                    .unwrap()
                    .checked_sub(4)
                    .unwrap()
            }
        };
        let trans_len =
            match state_len.checked_shl(byte_classes.stride2().as_u32()) {
                Some(trans_len) => trans_len,
                None => {
                    return Err(BuildError::state_id_overflow(
                        StateID::MAX.as_u64(),
                        usize::MAX.as_u64(),
                    ))
                }
            };
        StateID::new(trans_len.checked_sub(byte_classes.stride()).unwrap())
            .map_err(|e| {
                BuildError::state_id_overflow(
                    StateID::MAX.as_u64(),
                    e.attempted(),
                )
            })?;
        let num_match_states = match self.start_kind {
            StartKind::Unanchored | StartKind::Anchored => {
                nnfa.special().max_match_id.as_usize().checked_sub(1).unwrap()
            }
            StartKind::Both => nnfa
                .special()
                .max_match_id
                .as_usize()
                .checked_sub(1)
                .unwrap()
                .checked_mul(2)
                .unwrap(),
        };
        let mut dfa = DFA {
            trans: vec![DFA::DEAD; trans_len],
            matches: vec![vec![]; num_match_states],
            matches_memory_usage: 0,
            pattern_lens: nnfa.pattern_lens_raw().to_vec(),
            prefilter: nnfa.prefilter().map(|p| p.clone()),
            match_kind: nnfa.match_kind(),
            state_len,
            alphabet_len: byte_classes.alphabet_len(),
            stride2: byte_classes.stride2(),
            byte_classes,
            min_pattern_len: nnfa.min_pattern_len(),
            max_pattern_len: nnfa.max_pattern_len(),
            // The special state IDs are set later.
            special: Special::zero(),
        };
        match self.start_kind {
            StartKind::Both => {
                self.finish_build_both_starts(nnfa, &mut dfa);
            }
            StartKind::Unanchored => {
                self.finish_build_one_start(Anchored::No, nnfa, &mut dfa);
            }
            StartKind::Anchored => {
                self.finish_build_one_start(Anchored::Yes, nnfa, &mut dfa)
            }
        }
        debug!(
            "DFA built, <states: {:?}, size: {:?}, \
             alphabet len: {:?}, stride: {:?}>",
            dfa.state_len,
            dfa.memory_usage(),
            dfa.byte_classes.alphabet_len(),
            dfa.byte_classes.stride(),
        );
        Ok(dfa)
    }

    /// Finishes building a DFA for either unanchored or anchored searches,
    /// but NOT both.
    fn finish_build_one_start(
        &self,
        anchored: Anchored,
        nnfa: &noncontiguous::NFA,
        dfa: &mut DFA,
    ) {
        // This function always succeeds because we check above that all of the
        // states in the NFA can be mapped to DFA state IDs.
        let stride2 = dfa.stride2;
        let old2new = |oldsid: StateID| {
            StateID::new_unchecked(oldsid.as_usize() << stride2)
        };
        for (oldsid, state) in nnfa.states().iter().with_state_ids() {
            let newsid = old2new(oldsid);
            if !state.matches.is_empty() {
                dfa.set_matches(newsid, &state.matches);
            }
            sparse_iter(
                state,
                &dfa.byte_classes,
                |byte, class, mut oldnextsid| {
                    if oldnextsid == noncontiguous::NFA::FAIL {
                        if anchored.is_anchored() {
                            oldnextsid = noncontiguous::NFA::DEAD;
                        } else {
                            oldnextsid = nnfa.next_state(
                                Anchored::No,
                                state.fail,
                                byte,
                            );
                        }
                    }
                    dfa.trans[newsid.as_usize() + usize::from(class)] =
                        old2new(oldnextsid);
                },
            );
        }
        // Now that we've remapped all the IDs in our states, all that's left
        // is remapping the special state IDs.
        let old = nnfa.special();
        let mut new = &mut dfa.special;
        new.max_special_id = old2new(old.max_special_id);
        new.max_match_id = old2new(old.max_match_id);
        if anchored.is_anchored() {
            new.start_unanchored_id = DFA::DEAD;
            new.start_anchored_id = old2new(old.start_anchored_id);
        } else {
            new.start_unanchored_id = old2new(old.start_unanchored_id);
            new.start_anchored_id = DFA::DEAD;
        }
    }

    /// Finishes building a DFA that supports BOTH unanchored and anchored
    /// searches. It works by inter-leaving unanchored states with anchored
    /// states in the same transition table. This way, we avoid needing to
    /// re-shuffle states afterward to ensure that our states still look like
    /// DEAD, MATCH, ..., START-UNANCHORED, START-ANCHORED, NON-MATCH, ...
    ///
    /// Honestly this is pretty inscrutable... Simplifications are most
    /// welcome.
    fn finish_build_both_starts(
        &self,
        nnfa: &noncontiguous::NFA,
        dfa: &mut DFA,
    ) {
        let stride2 = dfa.stride2;
        let stride = 1 << stride2;
        let mut remap_unanchored = vec![DFA::DEAD; nnfa.states().len()];
        let mut remap_anchored = vec![DFA::DEAD; nnfa.states().len()];
        let mut is_anchored = vec![false; dfa.state_len];
        let mut newsid = DFA::DEAD;
        let next_dfa_id =
            |sid: StateID| StateID::new_unchecked(sid.as_usize() + stride);
        for (oldsid, state) in nnfa.states().iter().with_state_ids() {
            if oldsid == noncontiguous::NFA::DEAD
                || oldsid == noncontiguous::NFA::FAIL
            {
                remap_unanchored[oldsid] = newsid;
                remap_anchored[oldsid] = newsid;
                newsid = next_dfa_id(newsid);
            } else if oldsid == nnfa.special().start_unanchored_id
                || oldsid == nnfa.special().start_anchored_id
            {
                if oldsid == nnfa.special().start_unanchored_id {
                    remap_unanchored[oldsid] = newsid;
                    remap_anchored[oldsid] = DFA::DEAD;
                } else {
                    remap_unanchored[oldsid] = DFA::DEAD;
                    remap_anchored[oldsid] = newsid;
                    is_anchored[newsid.as_usize() >> stride2] = true;
                }
                if !state.matches.is_empty() {
                    dfa.set_matches(newsid, &state.matches);
                }
                sparse_iter(
                    state,
                    &dfa.byte_classes,
                    |_, class, oldnextsid| {
                        let class = usize::from(class);
                        if oldnextsid == noncontiguous::NFA::FAIL {
                            dfa.trans[newsid.as_usize() + class] = DFA::DEAD;
                        } else {
                            dfa.trans[newsid.as_usize() + class] = oldnextsid;
                        }
                    },
                );
                newsid = next_dfa_id(newsid);
            } else {
                let unewsid = newsid;
                newsid = next_dfa_id(newsid);
                let anewsid = newsid;
                newsid = next_dfa_id(newsid);

                remap_unanchored[oldsid] = unewsid;
                remap_anchored[oldsid] = anewsid;
                is_anchored[anewsid.as_usize() >> stride2] = true;
                if !state.matches.is_empty() {
                    dfa.set_matches(unewsid, &state.matches);
                    dfa.set_matches(anewsid, &state.matches);
                }
                sparse_iter(
                    state,
                    &dfa.byte_classes,
                    |byte, class, oldnextsid| {
                        let class = usize::from(class);
                        if oldnextsid == noncontiguous::NFA::FAIL {
                            dfa.trans[unewsid.as_usize() + class] = nnfa
                                .next_state(Anchored::No, state.fail, byte);
                        } else {
                            dfa.trans[unewsid.as_usize() + class] = oldnextsid;
                            dfa.trans[anewsid.as_usize() + class] = oldnextsid;
                        }
                    },
                );
            }
        }
        for i in 0..dfa.state_len {
            let sid = i << stride2;
            if is_anchored[i] {
                for next in dfa.trans[sid..][..stride].iter_mut() {
                    *next = remap_anchored[*next];
                }
            } else {
                for next in dfa.trans[sid..][..stride].iter_mut() {
                    *next = remap_unanchored[*next];
                }
            }
        }
        // Now that we've remapped all the IDs in our states, all that's left
        // is remapping the special state IDs.
        let old = nnfa.special();
        let mut new = &mut dfa.special;
        new.max_special_id = remap_anchored[old.max_special_id];
        new.max_match_id = remap_anchored[old.max_match_id];
        new.start_unanchored_id = remap_unanchored[old.start_unanchored_id];
        new.start_anchored_id = remap_anchored[old.start_anchored_id];
    }

    /// Set the desired match semantics.
    ///
    /// This only applies when using [`Builder::build`] and not
    /// [`Builder::build_from_noncontiguous`].
    ///
    /// See
    /// [`AhoCorasickBuilder::match_kind`](crate::AhoCorasickBuilder::match_kind)
    /// for more documentation and examples.
    pub fn match_kind(&mut self, kind: MatchKind) -> &mut Builder {
        self.noncontiguous.match_kind(kind);
        self
    }

    /// Enable ASCII-aware case insensitive matching.
    ///
    /// This only applies when using [`Builder::build`] and not
    /// [`Builder::build_from_noncontiguous`].
    ///
    /// See
    /// [`AhoCorasickBuilder::ascii_case_insensitive`](crate::AhoCorasickBuilder::ascii_case_insensitive)
    /// for more documentation and examples.
    pub fn ascii_case_insensitive(&mut self, yes: bool) -> &mut Builder {
        self.noncontiguous.ascii_case_insensitive(yes);
        self
    }

    /// Enable heuristic prefilter optimizations.
    ///
    /// This only applies when using [`Builder::build`] and not
    /// [`Builder::build_from_noncontiguous`].
    ///
    /// See
    /// [`AhoCorasickBuilder::prefilter`](crate::AhoCorasickBuilder::prefilter)
    /// for more documentation and examples.
    pub fn prefilter(&mut self, yes: bool) -> &mut Builder {
        self.noncontiguous.prefilter(yes);
        self
    }

    /// Sets the starting state configuration for the automaton.
    ///
    /// See
    /// [`AhoCorasickBuilder::start_kind`](crate::AhoCorasickBuilder::start_kind)
    /// for more documentation and examples.
    pub fn start_kind(&mut self, kind: StartKind) -> &mut Builder {
        self.start_kind = kind;
        self
    }

    /// A debug setting for whether to attempt to shrink the size of the
    /// automaton's alphabet or not.
    ///
    /// This should never be enabled unless you're debugging an automaton.
    /// Namely, disabling byte classes makes transitions easier to reason
    /// about, since they use the actual bytes instead of equivalence classes.
    /// Disabling this confers no performance benefit at search time.
    ///
    /// See
    /// [`AhoCorasickBuilder::byte_classes`](crate::AhoCorasickBuilder::byte_classes)
    /// for more documentation and examples.
    pub fn byte_classes(&mut self, yes: bool) -> &mut Builder {
        self.byte_classes = yes;
        self
    }
}

/// Iterate over all possible equivalence class transitions in this state.
/// The closure is called for all transitions with a distinct equivalence
/// class, even those not explicitly represented in this sparse state. For
/// any implicitly defined transitions, the given closure is called with
/// the fail state ID.
///
/// The closure is guaranteed to be called precisely
/// `byte_classes.alphabet_len()` times, once for every possible class in
/// ascending order.
fn sparse_iter<F: FnMut(u8, u8, StateID)>(
    state: &noncontiguous::State,
    classes: &ByteClasses,
    mut f: F,
) {
    let mut prev_class = None;
    let mut byte = 0usize;
    for &(b, id) in state.trans.iter() {
        while byte < usize::from(b) {
            let rep = byte.as_u8();
            let class = classes.get(rep);
            byte += 1;
            if prev_class != Some(class) {
                f(rep, class, noncontiguous::NFA::FAIL);
                prev_class = Some(class);
            }
        }
        let rep = b;
        let class = classes.get(rep);
        byte += 1;
        if prev_class != Some(class) {
            f(rep, class, id);
            prev_class = Some(class);
        }
    }
    for b in byte..=255 {
        let rep = b.as_u8();
        let class = classes.get(rep);
        if prev_class != Some(class) {
            f(rep, class, noncontiguous::NFA::FAIL);
            prev_class = Some(class);
        }
    }
}