# Struct fst::Set
[−]
[src]

pub struct Set(_);

Set is a lexicographically ordered set of byte strings.

A `Set`

is constructed with the `SetBuilder`

type. Alternatively, a `Set`

can be constructed in memory from a lexicographically ordered iterator
of byte strings (`Set::from_iter`

).

A key feature of `Set`

is that it can be serialized to disk compactly. Its
underlying representation is built such that the `Set`

can be memory mapped
(`Set::from_path`

) and searched without necessarily loading the entire
set into memory.

It supports most common operations associated with sets, such as membership, union, intersection, subset/superset, etc. It also supports range queries and automata based searches (e.g. a regular expression).

Sets are represented by a finite state transducer where output values are always zero. As such, sets have the following invariants:

- Once constructed, a
`Set`

can never be modified. - Sets must be constructed with lexicographically ordered byte sequences.

## Methods

`impl Set`

[src]

`fn from_path<P: AsRef<Path>>(path: P) -> Result<Self>`

Opens a set stored at the given file path via a memory map.

The set must have been written with a compatible finite state
transducer builder (`SetBuilder`

qualifies). If the format is invalid
or if there is a mismatch between the API version of this library
and the set, then an error is returned.

`fn from_bytes(bytes: Vec<u8>) -> Result<Self>`

Creates a set from its representation as a raw byte sequence.

Note that this operation is very cheap (no allocations and no copies).

The set must have been written with a compatible finite state
transducer builder (`SetBuilder`

qualifies). If the format is invalid
or if there is a mismatch between the API version of this library
and the set, then an error is returned.

`fn from_iter<T, I>(iter: I) -> Result<Self> where T: AsRef<[u8]>, I: IntoIterator<Item=T>`

Create a `Set`

from an iterator of lexicographically ordered byte
strings.

If the iterator does not yield values in lexicographic order, then an error is returned.

Note that this is a convenience function to build a set in memory.
To build a set that streams to an arbitrary `io::Write`

, use
`SetBuilder`

.

`fn contains<K: AsRef<[u8]>>(&self, key: K) -> bool`

Tests the membership of a single key.

# Example

use fst::Set; let set = Set::from_iter(&["a", "b", "c"]).unwrap(); assert_eq!(set.contains("b"), true); assert_eq!(set.contains("z"), false);

`fn stream(&self) -> Stream`

Return a lexicographically ordered stream of all keys in this set.

While this is a stream, it does require heap space proportional to the longest key in the set.

If the set is memory mapped, then no further heap space is needed. Note though that your operating system may fill your page cache (which will cause the resident memory usage of the process to go up correspondingly).

# Example

Since streams are not iterators, the traditional `for`

loop cannot be
used. `while let`

is useful instead:

use fst::{IntoStreamer, Streamer, Set}; let set = Set::from_iter(&["a", "b", "c"]).unwrap(); let mut stream = set.stream(); let mut keys = vec![]; while let Some(key) = stream.next() { keys.push(key.to_vec()); } assert_eq!(keys, vec![b"a", b"b", b"c"]);

`fn range(&self) -> StreamBuilder`

Return a builder for range queries.

A range query returns a subset of keys in this set in a range given in lexicographic order.

Memory requirements are the same as described on `Set::stream`

.
Notably, only the keys in the range are read; keys outside the range
are not.

# Example

Returns only the keys in the range given.

use fst::{IntoStreamer, Streamer, Set}; let set = Set::from_iter(&["a", "b", "c", "d", "e"]).unwrap(); let mut stream = set.range().ge("b").lt("e").into_stream(); let mut keys = vec![]; while let Some(key) = stream.next() { keys.push(key.to_vec()); } assert_eq!(keys, vec![b"b", b"c", b"d"]);

`fn search<A: Automaton>(&self, aut: A) -> StreamBuilder<A>`

Executes an automaton on the keys of this set.

Note that this returns a `StreamBuilder`

, which can be used to
add a range query to the search (see the `range`

method).

Memory requirements are the same as described on `Set::stream`

.

# Example

This crate provides an implementation of regular expressions
for `Automaton`

. Make sure to see the documentation for `fst::Regex`

for more details such as what kind of regular expressions are allowed.

use fst::{IntoStreamer, Streamer, Regex, Set}; let set = Set::from_iter(&["foo", "foo1", "foo2", "foo3", "foobar"]) .unwrap(); let re = Regex::new("f[a-z]+3?").unwrap(); let mut stream = set.search(&re).into_stream(); let mut keys = vec![]; while let Some(key) = stream.next() { keys.push(key.to_vec()); } assert_eq!(keys, vec![ "foo".as_bytes(), "foo3".as_bytes(), "foobar".as_bytes(), ]);

`fn len(&self) -> usize`

Returns the number of elements in this set.

`fn is_empty(&self) -> bool`

Returns true if and only if this set is empty.

`fn op(&self) -> OpBuilder`

Creates a new set operation with this set added to it.

The `OpBuilder`

type can be used to add additional set streams
and perform set operations like union, intersection, difference and
symmetric difference.

# Example

use fst::{IntoStreamer, Streamer, Set}; let set1 = Set::from_iter(&["a", "b", "c"]).unwrap(); let set2 = Set::from_iter(&["a", "y", "z"]).unwrap(); let mut union = set1.op().add(&set2).union(); let mut keys = vec![]; while let Some(key) = union.next() { keys.push(key.to_vec()); } assert_eq!(keys, vec![b"a", b"b", b"c", b"y", b"z"]);

`fn is_disjoint<'f, I, S>(&self, stream: I) -> bool where I: for<'a> IntoStreamer<'a, Into=S, Item=&'a [u8]>,`

S: 'f + for<'a> Streamer<'a, Item=&'a [u8]>

S: 'f + for<'a> Streamer<'a, Item=&'a [u8]>

Returns true if and only if the `self`

set is disjoint with the set
`stream`

.

`stream`

must be a lexicographically ordered sequence of byte strings.

# Example

use fst::{IntoStreamer, Streamer, Set}; let set1 = Set::from_iter(&["a", "b", "c"]).unwrap(); let set2 = Set::from_iter(&["x", "y", "z"]).unwrap(); assert_eq!(set1.is_disjoint(&set2), true); let set3 = Set::from_iter(&["a", "c"]).unwrap(); assert_eq!(set1.is_disjoint(&set3), false);

`fn is_subset<'f, I, S>(&self, stream: I) -> bool where I: for<'a> IntoStreamer<'a, Into=S, Item=&'a [u8]>,`

S: 'f + for<'a> Streamer<'a, Item=&'a [u8]>

S: 'f + for<'a> Streamer<'a, Item=&'a [u8]>

Returns true if and only if the `self`

set is a subset of `stream`

.

`stream`

must be a lexicographically ordered sequence of byte strings.

# Example

use fst::Set; let set1 = Set::from_iter(&["a", "b", "c"]).unwrap(); let set2 = Set::from_iter(&["x", "y", "z"]).unwrap(); assert_eq!(set1.is_subset(&set2), false); let set3 = Set::from_iter(&["a", "c"]).unwrap(); assert_eq!(set1.is_subset(&set3), false); assert_eq!(set3.is_subset(&set1), true);

`fn is_superset<'f, I, S>(&self, stream: I) -> bool where I: for<'a> IntoStreamer<'a, Into=S, Item=&'a [u8]>,`

S: 'f + for<'a> Streamer<'a, Item=&'a [u8]>

S: 'f + for<'a> Streamer<'a, Item=&'a [u8]>

Returns true if and only if the `self`

set is a superset of `stream`

.

`stream`

must be a lexicographically ordered sequence of byte strings.

# Example

use fst::Set; let set1 = Set::from_iter(&["a", "b", "c"]).unwrap(); let set2 = Set::from_iter(&["x", "y", "z"]).unwrap(); assert_eq!(set1.is_superset(&set2), false); let set3 = Set::from_iter(&["a", "c"]).unwrap(); assert_eq!(set1.is_superset(&set3), true); assert_eq!(set3.is_superset(&set1), false);

`fn as_fst(&self) -> &Fst`

Returns a reference to the underlying raw finite state transducer.

## Trait Implementations

`impl Debug for Set`

[src]

`impl AsRef<Fst> for Set`

[src]

Returns the underlying finite state transducer.

`impl<'s, 'a> IntoStreamer<'a> for &'s Set`

[src]

`type Item = &'a [u8]`

The type of the item emitted by the stream.

`type Into = Stream<'s>`

The type of the stream to be constructed.

`fn into_stream(self) -> Self::Into`

Construct a stream from `Self`

.